KinetiMax HPD Brushless DC Outer-Rotor Motors High Power Density, Frameless Stator-Rotor Sets

62 to 125 mm diameter, 0.16 to 6.30 Nm continuous torque, up to 1100 Watts output

The KinetiMax HPD (KM HPD) range of outer-rotor brushless DC motors comes in frameless stator-rotor part sets. Available in six frame sizes and three stack-heights each, the HPD series enables you to select an optimum configuration with an exact performance fit for your application.

These compact kit motors offer an ideal solution especially where total motor length is crucial in space-constrained applications.

Their large stator inner diameter makes integration of oversized ball bearing possible, and the large clear aperture inner diameter permits cabling to pass through the motor.

The KM HPD's excellent high torque-to-weight ratio is essential in applications where weight is critical. And with an efficiency ranging from 82% to 91% in a wide speed-torque range, the KinetiMax HPD frameless motors are ideal for battery-fed applications, where they help maximize the running time per battery charge.

Their low cogging torque combined with high peak torque improves motor behavior in servo applications.

Features & Benefits

- 8 different windings for optimal voltage/currrent supply selection (identified by letters C till K)
- Rated torque 0.16 to 6.30 Nm
- · High torque-to-weight ratio
- Excellent efficiency from 82% up to 91% over a wide range around the nominal working point

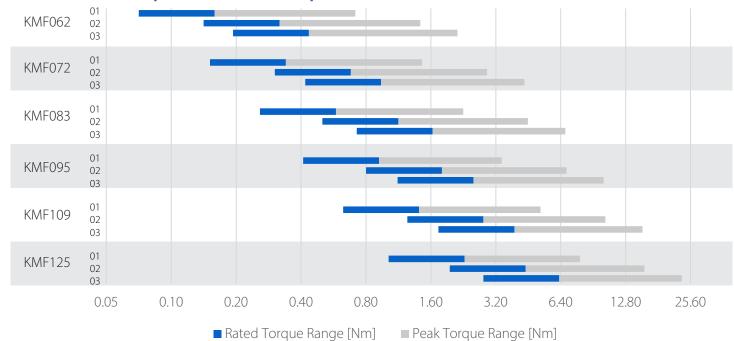
Options & Accessories

- · Hall commutation sensor board
- Temperature sensor mounted on stator
- Smaller hole in rotor
- · High balancing class of rotor

Typical Applications

- Automated guided vehicles (AGVs)
- Robotics (arms, joints)
- Handheld hydraulic power tools
- Material handling systems
- Medical equipment
- Rotary actuators
- Gimbals

Specifications

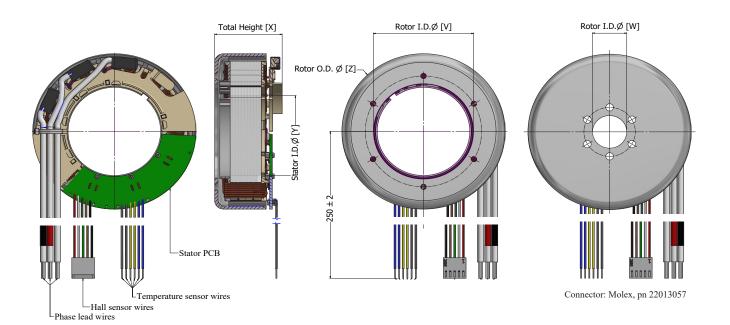


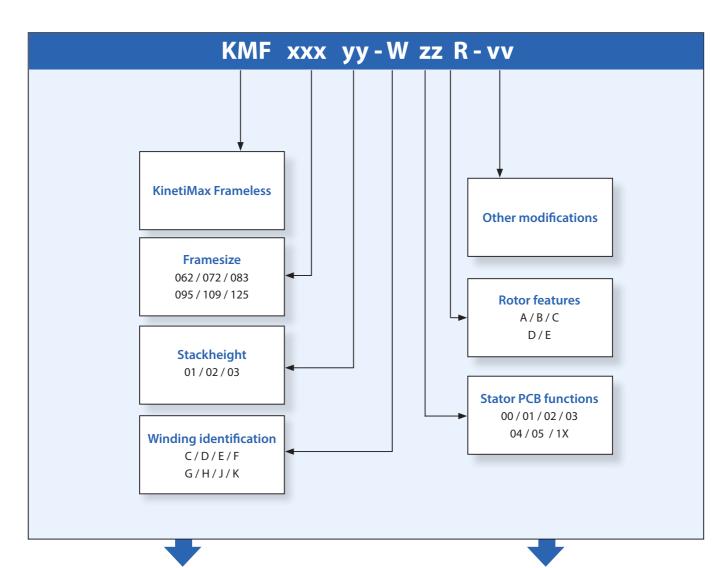
		KMF062				KMF072		KMF083		
Stack height		01	02	03	01	02	03	01	02	03
Rated Output Power	Watt	96	125	140	160	220	250	270	310	400
Rated Speed	RPM	5700	3600	3100	4600	3000	2500	4300	2500	2400
Rated Torque	Nm	0,16	0,32	0,44	0,34	0,68	0,94	0,58	1,13	1,63
Peak Torque	Nm	0,64	1,29	1,93	1,31	2,61	3,92	2,00	4,00	6,00
Efficiency	%	82	84	84	85	86	87	87	88	88
Rotor Inertia (x10-6) - large holl	kgm²	44	62	80	85	122	159	208	293	377
Rotor Inertia (x10-6) - small holl	kgm²	46	64	83	90	127	163	219	304	388
Max Winding Temperature	°C	160				160		160		
Number of pole pairs		15				15		15		
Weight	kg	0,15	0,22	0,29	0,21	0,32	0,43	0,34	0,51	0,69
Rotor I.D. [V] ²		16	16	16	16	16	16	20	20	20
Rotor I.D. [W] ²		38	38	38	44	44	44	51	51	51
Rotor O.D. [Z] ²	mm	61,9			72.3			83,9		
Stator I.D. [Y] ²	mm	32,0				39,0		45,5		
Total height [X] ²	mm	23,1	29,1	35,0	23,5	30,5	37,5	26,5	34,5	42,5

⁽¹⁾ See the dimensions in the drawing on the next page.

We refer you to the datasheet to view the full data per frame size and stack length, for each available winding.

Performance Comparison - Rated Torque [Nm]




KMF095			KMF109				KMF125				
01	02	03	01	02	03	01	02	03		Stack height	
325	422	596	508	627	819	791	1063	1156	Watt	Rated Output Power	
3600	2200	3000	3200	2200	1900	3400	2200	1670	RPM	Rated Speed	
0,92	1,80	2,52	1,41	2,80	3,90	2,29	4,40	6,30	Nm	Rated Torque	
3,00	6,00	9,00	4,53	9,06	13,59	6,83	13,67	20,50	Nm	Peak Torque	
88	89	89	89	90	90	90	90	91		Efficiency	
348	494	641	783	1108	1432	1338	1906	2437	kgm²	Rotor Inertia (x10-6) - large holl	
366	512	659	822	1147	1471	1410	1978	2546		Rotor Inertia (x10-6) - small holl	
	160		160			160			°C	Max Winding Temperature	
	15			15			15			Number of pole pairs	
0,45	0,69	0,93	1,00	1,38	1,76	1,08	1,61	2,13	kg	Weight	
20	20	20	20	20	20	26	26	26		Rotor I.D. [V] ²	
58	58	58	67	67	67	77	77	77		Rotor I.D. [W] ²	
95,2			109,7			125,2			mm	Rotor O.D. [Z] ²	
54,0			62,5				73,0			Stator I.D. [Y] ²	
28,0	36,5	45,5	32,0	43,0	54,0	33,5	46,0	57,5	mm	Total height [X] ²	

We refer you to the datasheet to view the full data per frame size and stack length, for each available winding.

Outline Dimensions

Commercial Part Numbering KMF HPD Stator-rotor sets

Stator PCB functions
No PCB
PCB with 3 Hall sensors
PCB with 1 Temperature sensor only
PCB with 3 Hall sensors and 1 Temperature sensor
PCB with 3 Temperature sensors only
PCB with 3 Hall sensors and 3 temperature senors
Starting with 1 are custom PCB's

Rotor features
Large bore hole, G40 balancing class
Small bore hole, G40 balancing class
Large bore hole. G16 balancing class
Small bore hole, G16 balancing class
Custom rotor or balancing

With **Other modifications** are meant custom added parts to stator or rotor like a stator bracket, other leadwires with connector or a rotor nave/shaft etc.

LET'S DESIGN YOUR NEXT PRODUCT TOGETHER

Your next generation of products and systems will be more compact, more precise and more maneuverable than ever before – and they won't be built with off-the-shelf motion technology.

We are Committed to Your Success

To develop advanced, leading edge systems, you need high performance, custom motion control products and the engineering expertise to optimize them for your application.

Design Collaboration for Innovation and Speed-to-Market

Allied Motion is known in the industry for our willingness to develop customized solutions to help ensure our customers' objectives are met.

Please contact us to discuss your specialized application requirements.

automated guided vehicle

robot arms

portable power tools

Allied Motion Solution Centers

Allied Motion Solution Centers provide support to customers around the world from five geographically-strategic locations. Each facility is staffed by experienced application engineers and customer service teams to assist you with all aspects of your motion control needs. We also have a global network of factory-trained Allied Motion Sales Partners to serve you. For contact information on the location nearest you, please see below or visit our website.

North America (US, Canada, Mexico)

Amherst, New York (HQ)

+1 (716) 242-7535 inquiry@alliedmotion.com

Europe

Kelheim, Germany

+49 9441/707 - 0 inquiry.eu@alliedmotion.com

Dordrecht, Netherlands

+31 (78) 621 9940 inquiry.nl@alliedmotion.com

Bromma, Sweden

+46 (8) 546 11 100 inquiry.eu@alliedmotion.com

Asia

Changzhou, Jiangsu, China

+86-(0)519-8511 3625 inquiry@alliedmotion.com

www.alliedmotion.com

